Effect of Varying MFCC Filters for Speaker Recognition
نویسندگان
چکیده
منابع مشابه
Automatic Speaker Recognition using LPCC and MFCC
A person's voice contains various parameters that convey information such as emotion, gender, attitude, health and identity. This report talks about speaker recognition which deals with the subject of identifying a person based on their unique voiceprint present in their speech data. Pre-processing of the speech signal is performed before voice feature extraction. This process ensures the voice...
متن کاملMFCC and its applications in speaker recognition
Speech processing is emerged as one of the important application area of digital signal processing. Various fields for research in speech processing are speech recognition, speaker recognition, speech synthesis, speech coding etc. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. Feature extraction is the first step ...
متن کاملMFCC Based Speaker Recognition using Matlab
Speech is the natural and efficient way to communicate with persons as well as machine hence it plays an vital role in signal processing. This paper describes how Speaker Recognition model using MFCC and VQ has been planned, built up and tested for male and female voice. In this paper cepstral method is used to find the pitch of speaker and according to that find out gender of the speaker . In ...
متن کاملTowards combining pitch and MFCC for speaker recognition systems
Usually, speaker recognition systems do not take into account the short–term dependence between the vocal source and the vocal tract. A feasibility study that retains this dependence is presented here. A model of joint probability functions of the pitch and the feature vectors is proposed. Three strategies are designed and compared for all female speakers taken from the SPIDRE corpus. The first...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/ijca2015906703